Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 13

Details

Autor(en) / Beteiligte
Titel
Electrical submersible pumps manual : design, operations, and maintenance
Auflage
Second edition
Ort / Verlag
Cambridge, Massachusetts ; : Gulf Professional Publishing,
Erscheinungsjahr
2018
Link zum Volltext
Beschreibungen/Notizen
  • Includes bibliographical references at the end of each chapters and index.
  • Front Cover -- Electrical Submersible Pumps Manual -- Electrical Submersible Pumps Manual: Design, Operations, and Maintenance -- Copyright -- Contents -- Preface to the First Edition -- Preface to the Second Edition -- 1 - Introduction -- 1.1 ARTIFICIAL LIFTING -- 1.1.1 Gas Lifting -- 1.1.2 Pumping -- 1.1.3 Comparison of Lift Methods -- 1.1.3.1 Lifting Capacities -- 1.1.3.2 System Efficiencies -- 1.1.3.3 Further Considerations -- 1.2 SHORT HISTORY OF ELECTRICAL SUBMERSIBLE PUMPING APPLICATIONS -- 1.3 BASIC FEATURES OF ELECTRIC SUBMERSIBLE PUMPING INSTALLATIONS -- 1.3.1 Applications -- 1.3.2 Advantages and Limitations -- REFERENCES -- 2 - Review of Fundamentals -- 2.1 INTRODUCTION -- 2.2 WELL INFLOW PERFORMANCE -- 2.2.1 Introduction -- 2.2.2 The Productivity Index Concept -- 2.2.3 Inflow Performance Relationships -- 2.2.3.1 Introduction -- 2.2.3.2 Vogel's Inflow Performance Relationship Correlation -- 2.2.3.3 The Composite Inflow Performance Relationship Curve -- 2.3 HYDRAULIC FUNDAMENTALS -- 2.3.1 Tubing Flow Calculations -- 2.3.2 Electrical Submersible Pumps -- 2.3.2.1 Operational Basics of Centrifugal Pumps -- 2.3.2.2 Specific Speed -- 2.3.2.3 Pump Performance -- 2.3.2.4 Cavitation -- 2.3.2.5 Axial Thrust Forces -- 2.3.2.6 Affinity Laws -- 2.4 ELECTRICAL FUNDAMENTALS -- 2.4.1 Alternating Current -- 2.4.2 Alternating Current Circuits, Alternating Current Power -- 2.4.3 Transformers -- 2.4.4 Electric Motors -- 2.4.4.1 Induction Motors -- 2.4.4.2 Permanent Magnet Motors -- 2.4.5 Electric Cable -- 2.5 BASICS OF SYSTEMS ANALYSIS -- 2.5.1 Introduction -- 2.5.2 The Production System -- 2.5.3 Basic Principles -- REFERENCES -- 3 - Electrical Submersible Pump Components and Their Operational Features -- 3.1 INTRODUCTION -- 3.2 THE SUBMERSIBLE PUMP -- 3.2.1 Basic Features -- 3.2.1.1 Pump Performance Curves -- 3.2.2 Floating Versus Fixed Impeller Pumps.
  • 3.2.3 Pump Temperature -- 3.2.4 Novel Pump Stage Design and Manufacturing -- 3.3 THE ESP MOTOR -- 3.3.1 Induction-Type Asynchronous Motors -- 3.3.1.1 Motor Construction -- 3.3.1.2 Operational Features -- 3.3.1.3 Motor Performance -- 3.3.1.3.1 Motor Testing -- 3.3.1.3.2 Performance Curves -- 3.3.1.3.3 Startup Conditions -- 3.3.1.3.3.1 Across-the-Line Start -- 3.3.1.3.3.2 Soft Start -- 3.3.1.4 Motor Temperature -- 3.3.1.4.1 Heat Transfer Calculations -- 3.3.1.4.2 Allowed Motor Temperature -- 3.3.1.5 High-Performance Motors -- 3.3.2 Permanent Magnet Motors -- 3.3.2.1 Introduction -- 3.3.2.2 Motor Controllers for Permanent Magnet Motors -- 3.3.2.2.1 Scalar Control -- 3.3.2.2.2 Vector Control -- 3.3.2.3 Constructional Details -- 3.3.2.4 Operational Features -- 3.3.2.5 Ultrahigh Speed Permanent Magnet Motor Applications -- 3.3.2.6 Comparison with Induction Motors -- 3.3.2.7 Case Studies -- 3.3.2.8 Conclusions -- 3.4 THE PROTECTOR OR SEAL SECTION -- 3.4.1 Main Functions -- 3.4.2 Basic Operation -- 3.4.3 Main Parts -- 3.4.3.1 The Thrust Bearing -- 3.4.3.2 Isolation Chambers -- 3.4.3.2.1 Labyrinth-Type Chambers -- 3.4.3.2.2 Blocking Fluids -- 3.4.3.2.3 Bag-Type Chambers -- 3.4.3.2.4 Metal Bellows Type Chambers -- 3.4.3.3 Shaft Seals -- 3.4.4 Other Features -- 3.5 THE GRAVITATIONAL GAS SEPARATOR -- 3.6 THE ESP CABLE -- 3.6.1 Cable Materials -- 3.6.2 Cable Construction -- 3.6.3 Operational Features -- 3.7 MISCELLANEOUS DOWNHOLE EQUIPMENT -- 3.8 SURFACE EQUIPMENT -- 3.8.1 Wellhead -- 3.8.2 Junction Box -- 3.8.3 Switchboard -- 3.8.4 Transformers -- 3.8.5 Miscellaneous Equipment -- REFERENCES -- 4 - Use of ESP Equipment in Special Conditions -- 4.1 INTRODUCTION -- 4.2 PUMPING VISCOUS LIQUIDS -- 4.2.1 Introduction -- 4.2.2 The Hydraulic Institute Model -- 4.2.3 Other Models -- 4.3 LOW OR CHANGING PUMPING RATES -- 4.3.1 Low-Rate Pumps.
  • 4.3.2 Wide-Operating-Range Pumps -- 4.4 PRODUCTION OF GASSY WELLS -- 4.4.1 Introduction -- 4.4.2 Free-Gas Volume Calculations -- 4.4.3 Pump Performance Degradation -- 4.4.3.1 Gas Interference in Centrifugal Pumps -- 4.4.3.2 Performance Criteria -- 4.4.4 Possible Solutions -- 4.4.4.1 Utilization of Natural Gas Separation -- 4.4.4.1.1 Pump Set Below the Perforations -- 4.4.4.1.2 Use of Motor Shrouds -- 4.4.4.2 Rotary Gas Separators -- 4.4.4.2.1 Available Types -- 4.4.4.2.2 The Role of Inducers -- 4.4.4.2.3 Separation Efficiencies -- 4.4.4.3 Gas Handling -- 4.4.4.3.1 Legacy Methods -- 4.4.4.3.1.1 Overstaged Pumps -- 4.4.4.3.1.2 Tapered Pumps -- 4.4.4.3.1.3 Stage Recirculation -- 4.4.4.3.2 Modern Solutions -- 4.4.4.3.2.1 The Poseidon Stage -- 4.4.4.3.2.2 Special Pumps -- 4.4.5 Conclusions -- 4.5 PRODUCTION OF ABRASIVE SOLIDS -- 4.5.1 Conventional Pumps -- 4.5.1.1 Introduction -- 4.5.1.2 Characteristics of Abrasive Materials -- 4.5.1.3 Sand Problem Areas -- 4.5.1.3.1 Pump Erosion -- 4.5.1.3.2 Abrasion in Radial Bearings -- 4.5.1.3.3 Abrasion in Thrust Washers -- 4.5.1.4 Solutions -- 4.5.1.4.1 Reduction of Radial Wear -- 4.5.1.5 Preventing Sand Accumulation Above the Pump -- 4.5.1.6 Conclusions -- 4.5.2 Special Pumps for Abrasive Handling -- 4.6 HIGH WELL TEMPERATURES -- 4.6.1 Temperature Problems and Solutions -- 4.6.2 Geothermal, Steam-Assisted Gravity Drainage Applications -- 4.7 VARIABLE-FREQUENCY OPERATION -- 4.7.1 Pump Performance at Variable Speeds -- 4.7.2 Variable-Speed Drives -- 4.7.2.1 Constructional Details -- 4.7.2.1.1 The Rectifier -- 4.7.2.1.2 The Direct Current Control Section -- 4.7.2.1.3 The Inverter -- 4.7.2.2 Available Variable-Speed Drive Types -- 4.7.2.2.1 "Six-Step" Variable-Speed Drive -- 4.7.2.2.2 Pulsed Width Modulation -- 4.7.2.2.3 Sine Wave Generators -- 4.7.2.2.4 Vector Control Devices -- 4.7.2.3 Operational Characteristics.
  • 4.7.3 Variable-Frequency Generators -- 4.7.4 Interaction of VSD/VFG and ESP Units -- 4.7.4.1 Variable-Frequency Operation of Electrical Motors -- 4.7.4.2 Interaction of ESP Motors and VSD/VFG Units -- 4.7.5 Benefits of Using Variable-Speed Drive/Variable-Frequency Generator Units -- 4.8 OTHER PROBLEMS -- REFERENCES -- 5 - Design of ESP Installations -- 5.1 INTRODUCTION -- 5.2 DATA REQUIREMENTS -- 5.3 CONVENTIONAL DESIGN -- 5.3.1 Well Inflow Calculations -- 5.3.2 Total Dynamic Head Calculations -- 5.3.3 Selection of the Pump -- 5.3.3.1 Pump Series -- 5.3.3.2 Pump Type -- 5.3.3.3 Number of Stages, Pump Power -- 5.3.3.4 Checking the Pump's Mechanical Strength -- 5.3.4 Selection of the Protector -- 5.3.5 Motor Selection -- 5.3.6 Selection of the Power Cable -- 5.3.6.1 Cable Length -- 5.3.6.2 Cable Type -- 5.3.6.3 Cable Size -- 5.3.6.4 Checking Motor Startup -- 5.3.7 Switchboard and Transformer Selection -- 5.3.8 Miscellaneous Equipment -- 5.3.8.1 Downhole Equipment -- 5.3.8.2 Surface Equipment -- 5.4 CONVENTIONAL DESIGN CONSIDERING MOTOR SLIP -- 5.4.1 Introduction -- 5.4.2 Interaction of the ESP Motor and the Pump -- 5.4.3 Changes in the Conventional Design -- 5.4.3.1 Finding Actual Motor Speed -- 5.4.3.2 Finding Pump Head Including Motor Slip -- 5.5 GASSY WELL DESIGN -- 5.5.1 Inflow and Free Gas Calculations -- 5.5.2 Calculation of Total Dynamic Head -- 5.5.3 The Rest of the Design Procedure -- 5.6 DESIGN OF A VARIABLE SPEED DRIVE INSTALLATION -- 5.6.1 Introduction -- 5.6.2 Pump Selection for Variable Speed Drive Service -- 5.6.2.1 Driving Frequency and the Number of Stages -- 5.6.2.2 Checking Pump Operation at the Minimum Liquid Rate -- 5.6.3 Motor Selection -- 5.6.4 Switchboard and Transformers -- 5.7 DESIGN OF A PERMANENT MAGNET MOTOR INSTALLATION -- 5.7.1 Design Considerations -- 5.7.1.1 Selection of the Pump.
  • 5.7.1.2 Selection of the Permanent Magnet Motor -- 5.8 COMPARISON OF INDUCTION MOTOR AND PERMANENT MAGNET MOTOR INSTALLATIONS -- REFERENCES -- 6 - Analysis and Optimization -- 6.1 INTRODUCTION -- 6.2 NODAL ANALYSIS -- 6.2.1 Using the Head-Rate Coordinate System -- 6.2.1.1 Single-Phase Cases -- 6.2.1.1.1 Constant Pumping Speed -- 6.2.1.1.2 Variable Pumping Speeds -- 6.2.1.1.3 Variable Wellhead Pressures -- 6.2.1.2 Multiphase Cases -- 6.2.1.2.1 Calculation Model -- 6.2.1.2.2 Applications -- 6.2.2 Using the Pressure-Rate Coordinate System -- 6.2.2.1 Single-Phase Cases -- 6.2.2.2 Multiphase Cases -- 6.3 DETERMINATION OF WELL INFLOW PERFORMANCE -- 6.3.1 The Conventional Method -- 6.3.2 Use of Variable-Speed Drives -- 6.3.3 Calculation of Bottomhole Pressures -- 6.3.3.1 Introduction -- 6.3.3.2 Annular Liquid Gradients -- 6.3.3.2.1 Static Conditions -- 6.3.3.2.2 Flowing Conditions -- 6.4 POWER EFFICIENCY OF ESP INSTALLATIONS -- 6.4.1 Power Flow in the ESP System -- 6.4.2 Energy Losses and Efficiencies -- 6.4.2.1 Hydraulic Losses -- 6.4.2.1.1 Tubing Losses -- 6.4.2.1.2 Backpressure Losses -- 6.4.2.1.3 Pump Losses -- 6.4.2.1.4 Power Loss in Gas Separator -- 6.4.2.2 Electrical Losses -- 6.4.2.2.1 Motor Losses -- 6.4.2.2.2 Cable Losses -- 6.4.2.2.3 Surface Electrical Losses -- 6.4.3 System Efficiency -- 6.5 OPTIMIZATION OF ELECTRICAL SUBMERSIBLE PUMP OPERATIONS -- 6.5.1 Introduction -- 6.5.2 Basics of Economic Optimization -- REFERENCES -- 7 - Operation, Monitoring, and Surveillance of Electrical Submersible Pumping Systems -- 7.1 INTRODUCTION -- 7.2 GUIDELINES FOR RUNNING AND PULLING -- 7.2.1 Transportation to the Wellsite -- 7.2.2 Equipment Installation -- 7.2.2.1 Motor Installation -- 7.2.2.2 Protector Installation -- 7.2.2.3 Pump Installation -- 7.2.2.4 ESP Cable Installation -- 7.2.2.5 Final Measures -- 7.2.3 Running Equipment in the Well.
  • 7.2.4 System Startup.
  • Description based on online resource; title from PDF title page (ebrary, viewed October 19, 2017).
Sprache
Identifikatoren
ISBN: 0-12-814571-4, 0-12-814570-6
Titel-ID: 9925022814506463
Format
1 online resource (565 pages) :; illustrations
Schlagworte
Oil well pumps, Oil wells, Submersible pumps