Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 15 von 24

Details

Autor(en) / Beteiligte
Titel
Energy-efficient retrofit of buildings by interior insulation : materials, methods, and tools
Ort / Verlag
London, UK : Elsevier Science & Technology,
Erscheinungsjahr
[2021]
Link zum Volltext
Beschreibungen/Notizen
  • Intro -- Energy-Efficient Retrofit of Buildings by Interior Insulation: Materials, Methods, and Tools -- Copyright -- Contents -- Contributors -- Section 1: Materials -- Chapter 1.1: Materials (Wood, Concrete, Brick, Natural Stones, Renewables) -- 1.1.1. Brickwork walls and internal insulation -- 1.1.1.1. Wall types and their hygro-thermal behavior when insulated on the internal side -- 1.1.1.1.1. Historical review of brickwork walls -- 1.1.1.2. Thermal retrofit of brickwork walls using internal insulation -- 1.1.1.3. Influence of the brickwork thickness on the hygric behavior in case of internal insulation -- 1.1.2. Protection against driving rain and rising damp -- 1.1.2.1. Capillary rising damp -- 1.1.2.2. Salt efflorescence and its removal by sacrificial renderings -- 1.1.2.3. Effective driving rain protection for brickwork walls -- 1.1.2.4. Necessity of brickwork wall hydrophobization -- 1.1.2.4.1. Principles and mechanism of hydrophobization -- 1.1.2.4.2. Application technique -- 1.1.2.4.3. Necessity and risk of hydrophobizing brickwork walls -- 1.1.3. Example of a retrofitted building by means of internal insulation and hydrophobization of the brickwork -- References -- Further reading -- Chapter 1.2: Peculiarities of using VIP as internal insulation -- 1.2.1. Introduction -- 1.2.2. Brick wall and internal insulation systems -- 1.2.3. Sensor positioning and measurement procedure -- 1.2.4. Results and discussions -- 1.2.5. Comparison of thermal bridge calculations -- Acknowledgment -- References -- Chapter 1.3: Hydrophilic and hydrophobic materials as internal insulations for historic masonry walls -- 1.3.1. Introduction -- 1.3.2. Definition of hydrophilic and hydrophobic -- 1.3.3. Hygric properties of insulation materials -- 1.3.4. Parametric study using hygrothermal calculations -- 1.3.5. Results of the hygrothermal simulations.
  • References -- Chapter 1.4: Historical plasters in connection with thermal insulations -- 1.4.1. Historical plasters -- 1.4.1.1. Plasters from the building physics perspective -- 1.4.1.1.1. Definition of a historical plaster -- 1.4.1.1.2. Requirements for renderings -- 1.4.1.1.3. Requirements for plasters (internal) and their interaction with renderings (external) -- 1.4.1.2. Variety of renderings and plasters and their properties -- 1.4.1.2.1. Lime plasters/renders -- 1.4.1.2.2. Gypsum plasters -- 1.4.1.2.3. Clay plasters -- 1.4.1.2.4. Lime cement and cement mortars -- 1.4.1.3. Plasters and rendering analysis -- 1.4.1.4. Analysis of historic mortars -- 1.4.2. Requirements to subsequently installed insulation with respect to historic plasters/renders -- References -- Chapter 1.5: Advantages and use of a newly developed load-bearing insulation material made of cattail -- 1.5.1. Background -- 1.5.2. Plant and cultivation -- 1.5.3. Environmental protection significance -- 1.5.4. Properties of the magnesite-bonded Typha board -- 1.5.5. Application on a half-timbered building -- 1.5.5.1. Use as infill and interior insulation -- 1.5.5.2. Use as internal insulation on the solid ground floor -- 1.5.6. Comparative study with other interior insulation systems in the monastery of Benediktbeuern -- 1.5.6.1. Introduction -- 1.5.6.2. Installation of the Typha insulation -- 1.5.6.3. Comparison of the measured results -- 1.5.6.4. Supplementary computational investigations -- 1.5.6.5. Comparative evaluation of different interior insulation systems -- 1.5.7. Summary -- References -- Chapter 1.6: Hygric interactions with antigraffiti systems -- 1.6.1. Introduction -- 1.6.2. Colorants and their removal options -- 1.6.2.1. Conclusion -- 1.6.3. Antigraffiti systems -- 1.6.3.1. Classification of AGS -- 1.6.3.1.1. AGS-Durable systems AGS 1.
  • 1.6.3.1.1.1. Durable systems-coatings AGS 1-1 -- 1.6.3.1.1.1.1. Conclusion -- 1.6.3.1.1.2. Durable systems-impregnations AGS 1-2 -- 1.6.3.1.1.2.1. Conclusion -- 1.6.3.1.2. AGS-sacrificial systems AGS 2 -- 1.6.3.1.2.1. Conclusion -- 1.6.3.2. Performance of AGS -- 1.6.3.3. AGS and property changes of the substrate -- 1.6.4. AGS and moisture transport -- 1.6.4.1. Brickwork and AGS 1-1 -- 1.6.4.2. Conclusion -- 1.6.4.3. Brickwork and AGS 1-2 -- 1.6.4.3.1. Contact angle measurements -- 1.6.4.3.2. Checking the hydrophobic properties -- 1.6.4.3.2.1. Conclusion -- 1.6.4.4. Brickwork and AGS 2 -- 1.6.4.4.1. Conclusion -- 1.6.5. Summary -- References -- Chapter 1.7: Insulating plasters and their use as internal insulation -- 1.7.1. Introduction -- 1.7.2. Composition of insulating plasters -- 1.7.3. Climatic conditions for hygrothermal analysis -- 1.7.4. 1D hygrothermal analysis of building details -- 1.7.5. 2D Hygrothermal analysis of building details -- 1.7.6. Thermal bridges-Solution proposals for internal edges -- References -- Section 2: Measurements and procedures -- Chapter 2.1: Restoration of moisture and salt damaged masonry -- 2.1.1. Introductory remarks -- 2.1.2. Condition of residential buildings in Austria -- 2.1.3. Planning steps for drying damp masonry -- 2.1.3.1. Problem -- 2.1.3.2. Building analysis and refurbishment concept -- 2.1.3.2.1. Sample extraction -- 2.1.3.2.2. Building material analysis -- 2.1.3.2.3. Restoration planning -- 2.1.4. Horizontal sealing method against capillary rising damp -- 2.1.4.1. Mechanical processes -- 2.1.4.1.1. Chromium steel sheet process -- 2.1.4.1.2. Sawing method -- 2.1.4.2. Injection method -- 2.1.4.2.1. Impulse spraying method and infusion tube method -- 2.1.4.2.2. Injection process with injection creams based on silane and/or siloxane -- 2.1.4.3. Electrophysical-active processes.
  • 2.1.5. Accompanying measures for masonry drying -- 2.1.5.1. Dehumidification -- 2.1.5.1.1. Heating rod technology -- 2.1.5.1.2. Microwave technology -- 2.1.5.1.3. Additional measures for masonry dehumidification during component heating -- 2.1.5.1.4. Vacuum technology -- 2.1.5.2. Reduction of harmful salt -- 2.1.5.2.1. Salt removal -- 2.1.5.2.2. Salt reduction -- 2.1.5.3. Plasters and paints -- 2.1.5.4. Sealings -- 2.1.5.4.1. Internal waterproofing composite systems (IAVS) -- 2.1.5.5. Execution details -- 2.1.6. Summary -- References -- Chapter 2.2: Status analysis and building diagnosis prior to the application of internal insulation -- practical implementa ... -- 2.2.1. Introductory remarks -- 2.2.2. Research methods -- 2.2.3. Which data should/can the preliminary examination provide? -- 2.2.4. Object examples -- 2.2.5. Summary -- References -- Chapter 2.3: Influence of internal thermal insulation on the sound insulation of walls -- 2.3.1. Introduction -- 2.3.2. Fundamentals of sound insulation -- 2.3.2.1. Sound reduction index -- 2.3.2.2. Single-number ratings -- 2.3.2.3. Mass law -- 2.3.2.4. Critical frequency -- 2.3.2.5. Mass-spring-mass resonance -- 2.3.2.6. Structural bridging -- 2.3.2.7. Multiple components -- 2.3.2.8. Direct and flaking sound transmission -- 2.3.3. Effect of internal insulation on sound insulation -- 2.3.3.1. Stud linings -- 2.3.3.2. Furring strip linings -- 2.3.3.3. Thermal insulation composite system linings (TICS) -- 2.3.4. Issues for outdoor-indoor transmission -- 2.3.5. Issues for indoor-indoor transmission -- 2.3.6. Summary and suggestions -- Acknowledgments -- References -- Chapter 2.4: Peculiarities of installing internal insulation in half-timbered walls -- detailed solutions -- some examples -- 2.4.1. Problem definition -- 2.4.2. Half-timbered constructions -- 2.4.2.1. Low-insulating brick linings.
  • 2.4.2.2. Thermal-insulating brick linings -- 2.4.2.3. Clay infills -- 2.4.2.4. Backfilling mortar infills -- 2.4.3. Professional framework repair -- 2.4.3.1. Problem definitions -- 2.4.3.2. Acknowledged technical rules -- 2.4.3.3. Principles of heat and moisture planning -- 2.4.4. Solutions -- 2.4.4.1. Preliminary investigations -- 2.4.4.2. Verification procedure regarding building physics -- 2.4.4.3. Special consideration of protection against driving rain -- 2.4.4.4. Thermal bridge calculations -- 2.4.4.5. Energetic consideration -- 2.4.4.6. Detailed planning -- 2.4.4.6.1. Joint infill/wood -- 2.4.4.6.2. Internal insulation systems -- 2.4.4.6.3. Coatings -- 2.4.4.6.4. Common sources of error -- 2.4.5. Examples -- 2.4.5.1. Half-timbered house-Schleswig-Holstein -- 2.4.5.2. Half-timbered house-Westphalia -- References -- Chapter 2.5: In situ measurement of water uptake on facades and its correspondence with internal insulation materials -- 2.5.1. Introduction -- 2.5.2. In situ measurement -- 2.5.2.1. Karstens tube -- 2.5.2.2. Franke test plate -- 2.5.2.3. Water absorption device -- 2.5.3. Laboratory measurement method of water absorption -- 2.5.4. Evaluation of the measurements -- 2.5.5. Measurement results -- 2.5.5.1. Object 1 in Evilard, Canton Bern -- 2.5.5.2. Object 2 in Oberdorf, Canton Solothurn -- 2.5.5.3. Object 3 in Lachen, Canton Schwyz -- 2.5.5.4. Object 4 in Holderbank, Canton Aargau -- 2.5.6. Assessment of the measurements -- 2.5.6.1. Coherence of Karstens tube and laboratory measurement -- 2.5.6.2. Coherence of the Franke test plate and laboratory measurement -- 2.5.6.3. Coherence of the water absorption device and laboratory measurement -- 2.5.6.4. Conclusion and outlook -- Acknowledgment -- References -- Chapter 2.6: Holistic and process approach to internal insulation -- 2.6.1. Introduction -- 2.6.2. Basic principles.
  • 2.6.2.1. Subdivision according to hygrothermal properties.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 0-12-816515-4
OCLC-Nummer: 1286499989
Titel-ID: 9925023257306463
Format
1 online resource (636 pages)
Schlagworte
Buildings, Insulating materials