Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 4

Details

Autor(en) / Beteiligte
Titel
Supramolecular nanotechnology : advanced design of self-assembled functional materials. Volume 3
Ort / Verlag
Weinheim, Germany : WILEY-VCH GmbH,
Erscheinungsjahr
[2023]
Link zum Volltext
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Cover -- Volume 1 -- Title Page -- Copyright -- Contents -- Preface -- Foreword -- Chapter 1 Complex Helical Self‐Organizations and Functions on All Length Scales. From Art, Architecture, Early Machines and Natural Phenomena to Biological and Synthetic Assemblies and Macromolecules -- 1.1 Definition of Self‐Organizations and Complex Systems -- 1.1.1 Early Examples of Helical Self‐Organizations in Art, Architecture, Early Machines, and Natural Phenomena -- 1.1.2 Examples of Helical Self‐Organizations of Natural Phenomena. Tornado's Spiral or Vortex, Hurricanes, Typhoons, Tropical Cyclones, Whirlpool, and Aurora Borealis -- 1.1.3 Early Examples of Helical Machines: Leonardo's Aerial Screw and Archimedes Water Screw -- 1.2 Helical Assemblies in Biology -- 1.2.1 The Pauling-Corey Hydrogen‐Bonded α‐Helix of Proteins and the Failure of Ribbon‐Like Model of Bamford, Bragg, Kendrew, and Perutz -- 1.2.2 The Coiled‐Coil Structure of Proteins by Pauling and Crick -- 1.2.3 The Structure of Globular Proteins Hemoglobin and Myoglobin is Self‐Organized from α‐Helices -- 1.2.4 The Story of the Discovery of the DNA Double Helix -- 1.2.5 The Structure and the Mechanism of Self‐Organization of Tobacco Mosaic Virus (TMV) -- 1.3 Biology Leading the Way to Synthetic Helical Macromolecules and Their Self‐Organizations -- 1.3.1 Polytetrafluoroethylene, Polyacetylenes, Poly(isocyanide)s, and Poly(carbodiimide)s -- 1.3.2 Helical Self‐Organizable Dendronized Covalent and Supramolecular Macromolecules -- 1.3.2.1 Helical Self‐Organization Mediated by Ionic Interactions Provide High Ionic Conductivity -- 1.3.2.2 Bundles of Helical Supramolecular Columns Self‐Organize into Helical Superlattices -- 1.3.2.3 Helical Self‐Organizations Mediated by Donor-Acceptor Interactions Generate Self‐Repairing Electronic Systems.
  • 1.3.2.4 Transforming Irreversible Intramolecular Electrocyclization Accompanied by Chain Cleavage of Cis‐PPA into Thermally Reversible Cis-Cisoidal to Cis-Transoidal Isomerization of Helical Dendronized PPA Induces a New Helix-Helix Transition and a General Methodology to Design Molecular Machines -- 1.3.2.5 Helical Self‐Organization of Homochiral Dendritic Dipeptides Provides Access to the First Synthetic Aquaporin‐Like (AQP) Channel for Water Transport -- 1.3.2.6 Programming Supramolecular Helical Polymerization of Dendritic Dipeptides with all Stereochemical Permutations of the Dipeptide Provides a Rational for Biological Homochirality -- 1.3.2.7 The Transplant of Quasi‐equivalency from the Self‐Assembly of Icosahedral Viruses to the Self‐Assembly of Dendrons and Dendronized Polymers Inspired Self‐Organization of Helical Monodisperse Spheres, Quasicrystals, and Frank-Kasper Phases -- 1.3.3 Self‐Interrupted Synthesis (SIS), Self‐Interrupted Polymerization (SIP), Self‐Accelerated Polymerization (SAP), and Self‐Interrupted Living Polymerization (SILP) -- 1.3.3.1 Self‐Organization of Constitutional Isomeric Dendritic Dipeptides Yields Hollow Columns and Hollow Spheres -- 1.3.4 The Transplant of Helical Diffraction Theory from Biology to Self‐Organizable Dendronized Supramolecular and Covalent Polymers and its Implications on Supramolecular Dendrimers -- 1.3.4.1 Hat‐Shaped Dendrimers Deracemize in Their Helical Hexagonal Crystal State Producing Isotactic Supramolecular Polymers from Atactic Polymers -- 1.3.4.2 The Cogwheel Mechanism of Helical Self‐Organization and Deracemization in the Crystal State -- 1.3.5 Arrangements of Helical Columns Exceeding the Complexity of Biological Coiled‐Coils by Supramolecular Orientational Memory Effect.
  • 1.4 From Amphiphilic Janus Dendrimers, Amphiphilic Janus Glycodendrimers, and One‐Component Multifunctional Sequence‐Defined Ionizable Amphiphilic Janus Dendrimers to Targeted Delivery of mRNA -- 1.4.1 Amphiphilic Janus Dendrimers -- 1.4.1.1 Amphiphilic Janus Glycodendrimers and Their Self‐Assembly into Glycodendrimersomes -- 1.4.1.2 Janus Dendrimers and Glycodendrimers Co‐assemble with Bacterial and Human Cells into Hybrid Cells -- 1.4.1.3 Endocytosis of Living Bacteria by Janus Dendrimers‐Derived Dendrimersomes -- 1.4.1.4 Disassembly of Dendrimersomes into Janus Dendrimers and Re‐Assembly of into Dendrimersomes -- 1.4.1.5 Encapsulation of Hydrophobic Components in Dendrimersomes and Decoration of Their Surface with Proteins and Nucleic Acids -- 1.4.1.6 One‐Component Multifunctional Sequence‐Defined Ionizable Amphiphilic Janus Dendrimers (IAJDs) for the Delivery of mRNA -- 1.4.1.7 The Unexpected Importance of the Primary Structure of the Hydrophobic Part of One‐Component Ionizable Amphiphilic Janus Dendrimers in Targeted mRNA Delivery Activity -- 1.4.1.8 Self‐Assembly of Amphiphilic Janus Dendrimers into Onion‐Like Dendrimersomes -- 1.4.2 Synthesis of Dendrimers and Janus Dendrimers by Thio-Bromo Click -- 1.5 Will Synthetic Chemistry Ever Equal or Even Exceed the Complexity and Precision of Nanoarchitectures from Biology? -- Acknowledgment -- References -- Chapter 2 Recent Advances in Porphyrin‐ and Phthalocyanine‐based 2D‐MOFs and 2D‐COFs for Energy Applications -- 2.1 Introduction -- 2.2 Synthesis -- 2.2.1 Porphyrin/Phthalocyanine Derivatives in MOFs Systems -- 2.2.2 Porphyrin/Phthalocyanine Derivatives in COFs Systems -- 2.2.3 General Synthesis Strategies of 2D‐MOFs and 2D‐COFs -- 2.3 Basics of Water‐splitting and Supercapacitor Devices -- 2.3.1 Water‐splitting -- 2.3.2 Types of Energy Storage Electrode Materials.
  • 2.4 2D‐MOF‐ and 2D‐COF‐based Catalysts for Water‐splitting -- 2.4.1 HER Catalysts Based on Porphyrin and Phthalocyanine 2D‐MOFs/2D‐COFs -- 2.4.2 Porphyrin and Phthalocyanine Based 2D‐MOFs/2D‐COFs for OER -- 2.5 2D‐MOFs/2D‐COFs for Supercapacitors -- 2.6 Summary and Outlook -- References -- Chapter 3 Controlled Supramolecular Self‐assembly in MOF Confined Spaces -- 3.1 Introduction -- 3.1.1 Encapsulation of Functional Molecules within MOFs -- 3.2 MOF‐Driven Self‐assembly of Supramolecular Assemblies -- 3.2.1 Design, Synthesis and Functionality of the MOF Nanoreactors -- 3.2.2 Synthesis of Supramolecular Assemblies -- 3.2.2.1 Subnanometer Metal Clusters and SACs -- 3.2.2.2 Organic Polymers -- 3.2.2.3 Supramolecular Coordination Compounds (SCCs) -- 3.3 Perspectives: Potential Unique Applications of Supramolecular Assemblies within MOFs -- 3.3.1 Enzimatic Catalysis -- 3.3.2 Environmental Remediation -- 3.4 Conclusion -- Acknowledgments -- References -- Chapter 4 Supramolecular Materials from Porphyrins and Phthalocyanines -- 4.1 Introduction -- 4.2 Assembly by Host-Guest Interactions -- 4.3 Assembly by Balancing Opposing Interactions -- 4.3.1 Liquid‐Crystalline Phthalocyanines -- 4.3.2 Supramolecular Polymers -- 4.4 Assembly Using Chirality as a Tool -- 4.5 Directed Self‐Assembly -- 4.6 Outlook -- Acknowledgments -- References -- Chapter 5 Molecular Design and Excited State Engineering for Supramolecular H2 Evolution Catalysts -- 5.1 Introduction -- 5.2 Restricted Exciton Lifetime - Enhanced Aggregation -- 5.2.1 Self‐Assembled Photocatalysts Consisting of Perylene Monoimide (PMI) -- 5.2.2 Self‐Assembled Photocatalysts Consisting of Perylene Diimide (PDI) -- 5.2.3 Self‐Assembled Photocatalysts Based on Zinc Porphyrin Derivatives -- 5.3 Prolonged Exciton Lifetime - Enhanced Intersystem Crossing Through Salt Addition.
  • 5.3.1 Prolonged Exciton Lifetime - Enhanced Triplet Formation by Iodide Addition -- 5.3.2 Prolonged Exciton Lifetime - Octupolar Building Block for Seawater Splitting -- 5.4 Outlook -- References -- Chapter 6 Constitutional and Configurational Isomerism within Peptide/π-Electron Self‐Assembling Molecules and Their Impacts on Supramolecular Nanostructures -- 6.1 Introduction -- 6.1.1 Constitutional Isomerism -- 6.1.2 Configurational Isomers -- 6.2 Conclusion -- References -- Chapter 7 Self‐assembly Templated by Radical-Radical Interactions -- 7.1 Introduction -- 7.2 Background -- 7.2.1 History of Organic Radicals -- 7.2.2 Supramolecular Stabilization of Radical Dimers -- 7.2.3 Molecular Stabilization of Radical Dimers -- 7.3 Applications -- 7.3.1 Supramolecular Polymer Construction -- 7.3.2 Other Applications -- 7.4 Conclusion -- References -- Chapter 8 Molecular Engineering of Bio‐Assemblies: Prospects and Design Rules for Sustainable, Wearable Electromechanical Materials -- 8.1 Introduction: Biological Self‐Assembly -- 8.2 Piezoelectricity: Functional Self‐Assembly -- 8.2.1 Basic Building Blocks: Amino Acids -- 8.2.2 Peptide Crystals and Nanostructures -- 8.2.2.1 Self‐Assembled Monolayers as Novel Piezoelectrics -- 8.2.2.2 Diphenylalanine as a Key Piezoelectric Peptide Motif -- 8.2.3 Piezoelectric Protein Assemblies -- 8.3 Conclusions and Outlook -- References -- Chapter 9 Supramolecular Interfacial Nanoarchitectonics -- 9.1 Introduction: The Importance of Supramolecular Chemistry at the Interface from the Perspective of the Secrets of Living Organisms -- 9.2 Molecular Recognition at the Interface -- 9.3 Nanoarchitectonics Fabrication at Interfaces -- 9.4 New Role of Interfaces: Connecting the Nano and Macro -- 9.5 New Developments in Molecular Recognition.
  • 9.6 Conclusion: Can We Say that the Function of Organic Molecules Has Been Sufficiently Investigated?.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 3-527-83404-4, 3-527-83403-6
OCLC-Nummer: 1376931654
Titel-ID: 9925172194506463
Format
1 online resource (1343 pages)
Schlagworte
Nanotechnology, Organic electronics